12.1 Trigonometric Ratios

12.1 - Trigonometry - the study of the relationships between the sides and the angles of triangles

Mathematicians discovered that whenever the ratio of the shorter leg's length to the longer leg's length in a right triangle was close to a specific fraction, the angle opposite the shorter leg was close to a specific measure.

If the ratio of shorter leg/longer leg is $3 / 5$, the angle opposite the shorter leg is always approximately 31 degrees.

Ratio of Opposite/Adjacent $=$ Tangent
 $\sin A=\frac{a}{c}$ $\sin B=\frac{b}{c}$ $\cos A=\frac{b}{c}$
$\operatorname{Tan} B=\frac{b}{a}$ $S \frac{0}{n} C \frac{a}{n} T \frac{0}{a}$

For any acute angle A in a right triangle: sine of $\angle A=\frac{\text { length of opposite leg }}{\text { length of hypotenuse }}$ cosine of $\angle A=\frac{\text { length of adjacent leg }}{\text { length of hypotenuse }}$ tangent of $\angle A=\frac{\text { length of opposite leg }}{\text { length of adjacent leg }}$

This leg is adjacent to $\angle A$.
tangent of $\angle A=$ length of adjacent leg

$$
\begin{array}{cc}
\cos (64) \cdot 28=x & \frac{x \operatorname{sig}(24}{\operatorname{sigh} 24}=\frac{12.1}{\sin (24)} \\
x=12.3 \\
x=29.7 & x=18.3
\end{array}
$$

Find the length of the hypotenuse of a right triangle if an acute angle measures 20° and the leg opposite the angle measures 410 feet.

$$
\begin{gathered}
S \frac{0}{h} C \frac{a}{\pi} T \frac{0}{a} \\
x \cdot \sin 20^{\circ}=\frac{410}{x} x \\
\frac{x \sin 20}{\sin 20}=\frac{40}{\sin 20} \\
x=1198.8 f x
\end{gathered}
$$

15. $w \approx$

16. $x \approx$

17. $y \approx$

You can also find the angle in a right triangle if you know the ratio of two sides by using the inverse function on your calculator $\left(\tan ^{-1}\right)$

A right triangle has legs of length 8 inches and 15 inches. Find the measure of the angle opposite the 8 -inch leg.

$$
\begin{gathered}
\operatorname{Tan} x=\frac{8}{15} \\
\operatorname{Tan}^{-1}\left(\frac{8}{15}\right) \\
28^{\circ}
\end{gathered}
$$

February 11, 2020
18. $a \approx$ \qquad

19. $t \approx$

20. $z \approx$

